NOTE DUE DATES! Closing **MONDAY**: HW_3C Closing **FRIDAY**: HW_4A,4B,4C

Entry Task: Let R be the region bounded by

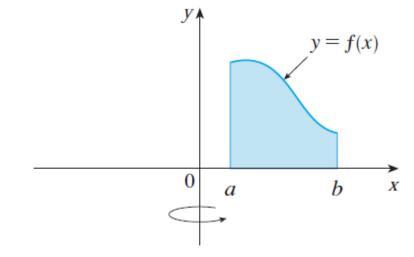
$$y = \frac{1}{x^2} + \frac{1}{x}$$
, $y = 0, x = 1, x = 2$.

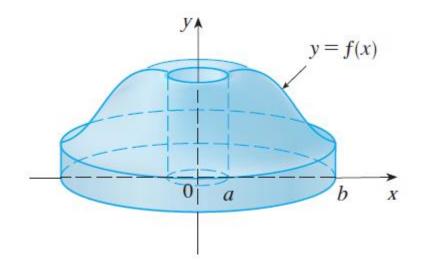
- (a) Set up an integral for the volume of the solid obtained by rotating R about the x-axis.
- (b) Try to use cross-sectional slicing to set up an integral for the volume obtained by rotating R about the yaxis. Why is this difficult/messy?

6.3 Volumes Using Cylindrical Shells

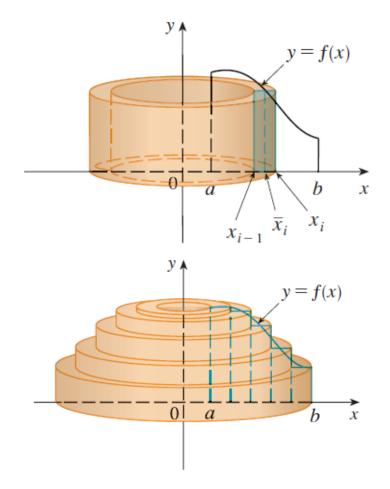
Visual Motivation:

Consider the solid





We want to us "dx", but that breaking the region into thin vertical subdivisions and rotating those gives a new shape, "cylindrical shells"



Derivation:

The pattern for the volume of one thin cylindrical shell is

VOLUME = 2π(radius)(height)(thickness)

= (surface area)(thickness)
 Thus, if we can find a formula, SA(x_i), for
 the surface area of a typical cylindrical
 shell, then

Thin Shell Volume \approx SA(x_i) Δ x, Total Volume $\approx \sum_{i=1}^{n} SA(x_i) \Delta x$ Exact Volume = $\lim_{n \to \infty} \sum_{i=1}^{n} SA(x_i) \Delta x$ Volume = $\int_{a}^{b} SA(x)dx$ $=\int 2\pi (radius)(height)dx$ Example:

Let R be the region bounded by

 $y = x^3$, y = 4x, between x = 1 and x = 2.

- 1.Set up the integrals for the volume of the solid obtained by rotating R **about the y-axis**.
 - (a) Using dy.
 - (b) Using dx.
- 2. What changes if we rotate about the vertical line x = -2?
- 3. What changes if we rotate about the vertical line x = 3?

Volume using cylindrical shells

- Draw a typical rectangle parallel to the axis of rotation.
 Label location (x or y) and the thickness (dx or dy) of a typical rectangle.
- Draw a typical cylindrical shell Label everything in terms of the labeled variable.
- 3. Find the formula for the surface area of a typical shell: radius = ? (looks like x, x-a or a-x) height = ? (involves the functions)
- 4. Integrate! $\int_{a}^{b} 2\pi (radius) (height) (dx or dy)$

Volume using cross-sectional slicing

- Draw a typical rectangle
 perpendicular to the axis of
 rotation. Label location (x or y) and
 the thickness (dx or dy) of a typical
 rectangle.
- Draw a typical cross-section area.
 Label everything in terms of the labeled variable.
- 3. Find the formula for the cross-sectional area:

Disc: Area = π (radius)² Washer: Area = π (outer)² - π (inner)²

```
4. Integrate!

\int_{a}^{b} (\pi(\text{outer})^2 - \pi(\text{inner})^2)(dx \text{ or } dy)
```

Flow chart of all Volume Methods

- Step 1: Choose the variable you want to use (based on the region and the given equations)
- Step 2: Draw typical rectangle based on the variable you chose which will either be perpendicular (disc/washer) or parallel (shells) to the axis of rotation. Label location of rectangle and thickness.
- Step 3: Perpendicular→ Cross-sections: Find pattern for radius of disc/washers.Parallel→ Shells: Find pattern for radius and height of shells.
- Step 4: Integrate the appropriate pattern as we have discussed.

Axis of rotation	Disc/Washer	Shells
x-axis (or any horizontal axis)	dx	dy
y-axis (or any vertical axis)	dy	dx

If you still are having trouble seeing which variable goes with which method here: